
GEOPHYSICS, VOL. 66, NO. 3 (MAY-JUNE 2001); P. 890–896, 4 FIGS., 2 TABLES.

Short Note

Numerical simulation of the Biot slow wave in water-saturated
Nivelsteiner Sandstone

Børge Arntsen∗ and José M. Carcione‡

INTRODUCTION

The development of rock acoustic models is important for
interpreting seismic data. These models should relate seismic
properties such as wave velocity and attenuation to the pro-
duction and lithological properties of reservoir rocks, such as
porosity, permeability, fluid type, and fluid saturation.

As is well known (Biot, 1962), two P-waves propagate in
a saturated porous medium. Plona (1980) was the first to ob-
serve the second (slow) P-wave in water-saturated sintered
glass beads. Following this observation, Nagy et al. (1990) and
Boyle and Chotiros (1992) detected the slow wave in thin
slabs of air-filled sandstone and in water-saturated unconsoli-
dated sand, respectively. Comparisons between theory and ex-
periment were performed by Teng (1990), who used a finite-
element algorithm, and Gurevich et al. (1999), who used the
OASES modeling code (Schmidt and Tango, 1986), based on a
reflectivity algorithm. Gurevich et al. (1999) performed exper-
iments on a sample made of sintered glass beads and used the
Biot’s pore-form factor as a fitting parameter. This factor con-
trols the behavior of the dynamic permeability/tortuosity func-
tion. However, although this approach successfully describes
the wave propagation properties of synthetic porous media
such as sintered glass beads, in natural porous media, such as
sandstone, discrepancies between Biot’s theory and measure-
ments are the result of complex pore shapes and the presence of
clay, which are not present in synthetic media. This complexity
gives rise to a variety of relaxation mechanisms that contribute
to the attenuation of the different wave modes. Stoll and Bryan
(1970) show that attenuation is controlled by the anelasticity
of the skeleton (friction at grain contacts) and by viscodynamic
causes. Chin et al. (1985) have analyzed Plona’s data and are
able to assess the attenuation in Plona’s experiments. They use
a generalized ray expansion algorithm, where multiple reflec-
tions and converted modes can be identified easily.
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Kelder and Smeulders (1997) present experimental data of
slow-wave propagation in a natural water-saturated sandstone,
which can be representative of overpressured hydrocarbon
reservoir sandstones. These acoustic experiments in the labo-
ratory can be used to verify and calibrate a suitable theory for
computing synthetic seismograms. The experiment conducted
by Kelder and Smeulders (1997) provides such a basis for the-
ory and numeric algorithm verification. They obtain transmis-
sion microseismograms through a plate made of a clean, un-
consolidated natural sandstone, where all the events predicted
by Biot’s theory can be observed. The experiment provides,
under controlled conditions, the traveltimes and relative am-
plitudes of the fast and slow compressional waves and the shear
wave. A first attempt to model Kelder and Smeulders’ micro-
seismograms is performed by Bordakov et al. (1999), using a
semianalytical approach based on plane-wave theory and in-
verse Fourier transformation. They show that Biot’s theory
properly predicts the traveltimes but yields much higher ampli-
tudes for the multiple reflections, the slow wave, and the shear
wave. Then, they use the BISQ model (Dvorkin et al., 1994)
to incorporate the squirt-flow mechanism in Biot’s theory. The
slow wave disappears, in contrast with the experiments, and the
modified theory cannot predict the relative amplitude between
the fast waves.

In this work we attempt to model the microseismograms by
using Biot’s theory, introducing stiffness and viscodynamic dis-
sipation based on viscoelastic theory to model additional atten-
uation mechanisms. This approach was proposed by Carcione
(1998) to model relaxation mechanisms arising from the in-
teraction between the skeleton and the pore fluid. In Carcione
(1998), the Biot solid-grain/pore-fluid coupling modulus is gen-
eralized to a time-dependent relaxation function. We show
that the experimental attenuation levels observed by Kelder
and Smeulders (1997) can be modeled by making viscoelas-
tic (complex and frequency dependent) the rigidity modulus
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and the fluid viscosity/permeability factor, in addition to the
above-mentioned coupling modulus. The modeling algorithm
is parameterized with the dry-rock bulk and rigidity moduli and
the tortuosity to match the observed traveltimes, with the qual-
ity factors associated to the relaxation functions to match the
observed amplitudes. However, unlike Biot’s theory, the algo-
rith’s present viscoelastic extension is based on a phenomeno-
logical model that cannot be used as a predictive tool.

To our knowledge, this is the first attempt to model an ultra-
sonic laboratory experiment (including slow-wave data) using
a numeric algorithm based on a grid differential method for
solving the poroelastic equations. The calibrated seismic mod-
eling code can be used to compute synthetic seismograms under
general conditions of material variability.

POROELASTIC THEORY

The constitutive equations for an isotropic poroelastic
medium under plane strain conditions are given by (Biot, 1962)

τxx,t = Evx,x + (E − 2µ)vz,z+ αMε + sx, (1)

τzz,t = (E − 2µ)vx,x + Evz,z+ αMε + sz, (2)

τxz,t = µ(vx,z+ vz,x)+ sxz, (3)

p,t = −Mε + sf , (4)

and

ε = α(vx,x + vz,z)+ qx,x + qz,z, (5)

where τxx, τzz, and τxz are the total stress components, p is the
fluid pressure, v and q are the solid and fluid (relative to the
solid) particle velocities, and sx , sz, sxz, and sf are the external
sources of stress for the solid and the fluid, respectively. The
subscript x denotes ∂/∂x.

The elastic coefficients are given by

E = Km + 4
3
µ, (6)

M = K 2
s

D − Km
, (7)

D = Ks
[
1+ φ(KsK−1

f − 1
)]
, (8)

and

α = 1− Km

Ks
, (9)

with Km, Ks, and K f the bulk moduli of the drained matrix,
solid, and fluid, respectively; φ the porosity; and µ the shear
modulus of the drained (and saturated) matrix. The stiffness E
is the P-wave modulus of the dry skeleton, M is the coupling
modulus between the solid and the fluid, andα is the poroelastic
coefficient of effective stress.

One of the poroelastic equations of motion is Biot-Newton’s
dynamic equations (Biot, 1962):

τxx,x + τxz,z = ρvx,t + ρ f qx,t (10)

and

τxz,x + τzz,z = ρvz,t + ρ f qz,t , (11)

where

ρ = (1− φ)ρs + φρ f

is the composite density, with ρs and ρ f the solid and fluid
densities, respectively. Another poroelastic equation of motion
is the dynamic Darcy’s law:

−p,x = ρ f vx,t +mqx,t + b ∗ qx,t (12)

and

−p,z = ρ f vz,t +mqz,t + b ∗ qz,t , (13)

where m= Tρ f /φ, with T the tortuosity, b a relaxation function
(see next section), and ∗ as time convolution. At low frequen-
cies b= H(t)η/κ , where H is the Heaviside function, η is the
fluid viscosity, and κ is the permeability of the medium.

The phase velocities and attenuation factors as a function of
frequency can be found, for instance, in Carcione (1998) [equa-
tions (26) and (27), respectively]. Let us denote these quantities
by c and α(•) and the fast compressional, slow compressional,
and shear waves with the labels P+, P−, and S, respectively.

EXTENSION TO THE POROVISCOELASTIC CASE

Viscoelasticity is introduced into Biot’s poroelastic equa-
tions for modeling attenuation related to the potential energy
(stiffness dissipation) and the kinetic energy (viscodynamic dis-
sipation) (Biot, 1962; Dvorkin et al., 1994; Carcione, 1996).
Stiffness dissipation is described in the stress–strain relation,
and viscodynamic dissipation is a dynamic permeability effect
attributable to frequency-dependent interaction between the
pore fluid and the solid matrix (e.g., Johnston et al., 1987). In the
first case, the stiffnesses E, µ, and M are generalized to time-
dependent relaxation functions, which we denote, in general,
by ψ(t). We assume that ψ(0)=ψ0 equals the respective Biot
modulus, i.e., we obtain Biot’s poroelastic constitutive equa-
tions at high frequencies. Assume that the relaxation functions
are described by a single Zener model,

ψ(t) = ψ0
τσ

τε

[
1+

(
τε

τσ
− 1

)
exp(−t/τσ )

]
H(t), (14)

where τε and τσ are relaxation times. In the absence of exper-
imental values for attenuation versus frequency, we consider
the simplest model, that is, a single relaxation peak for each
modulus with peak frequency close to the frequency of the
transducers.

Viscoelasticity implies that multiplications of bulk moduli
by field variables in equations (1)–(5) be replaced by time
convolutions. For instance, in equation (1) these products are
E(vx,x+vz,z),µvz,z, andαε. We substitute them byψ ∗ u,t , where
ψ denotes the relaxation function corresponding to E, µ, or M
and u denotes vx,x + vz,z, µvz,z, or αε. As in the single-phase
viscoelastic case (Carcione, 1995), we introduce memory vari-
ables to avoid the time convolutions. Then, the terms ψ ∗ u,t
are substituted by ψ0u + e, where e is the memory variable.
Five memory variables are related to the constitutive equa-
tions, which satisfy the differential equation

e,t = ψ0

(
1
τε
− 1
τσ

)
u− e

τσ
. (15)
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Those variables are e= (ψ ′,t H) ∗ u, where ψ ′ multiplies the
Heaviside function in equation (14), that is, ψ =ψ ′H .

On the other hand, viscodynamic dissipation introduces two
additional memory variables because of the time-dependent
relaxation function b(t). Hence,

b(t) = η

κ

[
1+

(
τε

τσ
− 1

)
exp(−t/τσ )

]
H(t). (16)

The terms b∗u,t are substituted by b(0)u+ e, and the memory-
variable equations have the form

e,t = − 1
τσ

[
η

κ

(
τε

τσ
− 1

)
u+ e

]
, (17)

where the memory variables are (b′,t H) ∗ qx and (b′,t H) ∗ qz,
with b′ defined by the expression b= b′H .

In the frequency domain, the time convolution ψ ∗ u is re-
placed by ψ̄ ū, where the bar indicates time Fourier transform.
We obtain from equation (14)

ψ̄ = ψ0
τσ

τε

(
1+ iωτε
1+ iωτσ

)
, (18)

and each complex modulus is denoted by Ē, µ̄, andM̄ .
The relaxation times can be expressed in terms of a Q factor

Q0 and a reference frequency f0 as

τε(σ ) = 1
2π f0 Q0

[√
Q2

0 + 1± 1
]
, (19)

where τε corresponds to the plus sign and τσ corresponds to
the minus sign.

On the other hand, the frequency-domain viscodynamic op-
erator has the form

b̄ = η

κ

(
1+ iωτε
1+ iωτσ

)
. (20)

The functional dependence of b̄ on ω is not that predicted by
models of dynamic fluid flow. A physical dynamic permeability
function is given, for instance, in Johnson et al. (1987). Here, we
intend to model the viscodynamic operator in a narrow band
about the frequency used in the laboratory experiment. The
advantage of using equation (20) is the easy implementation
in time-domain numerical modeling.

The phase velocities and attenuation factors are obtained
from equations (26) and (27) of Carcione (1998) by substituting
E, µ, M , and η/κ by Ē, µ̄,M̄ , and b̄, respectively.

MODELING THE ACOUSTIC PROPERTIES

The Nivelsteiner Sandstone sample used by Kelder and
Smeulders (1997) in their experiment is a Miocene quartz sand
with very low clay content. It has an average grain distribu-
tion of 100 to 300 µm. The material properties of Nivelsteiner
Sandstone are given in Table 1. For simplicity we assume that
the grains are made of pure quartz. We obtain the matrix prop-
erties by fitting the experimental data provided by Kelder and
Smeulders (1997) at 500 kHz and by assuming that the level
of dissipation is predicted by Biot’s theory. First, we compute
the shear modulus of the dry rock, µ, by fitting the shear-wave
velocity of the saturated rock. Second, the dry-rock bulk mod-
ulus, Km, is obtained by fitting the compressional velocity of the

saturated rock. Finally, the tortuosity, T , is used as a free pa-
rameter to fit the experimental slow-wave velocity. The prop-
erties of the saturated rock at 500 kHz are given in Table 2.
They are within the experimental errors given by Kelder and
Smeulders (1997). In addition, the properties for the porovis-
coelastic case are indicated. The introduction of viscoelastic
effects is necessary to model the relative amplitudes between
the different events. Figure 1 shows the phase velocities of the
(a) fast, (b) slow, and (c) shear wave as a function of frequency.
The squares and error bars correspond to the experimental
data of Kelder and Smeulders (1997). Biot’s velocities are rep-
resented by the broken lines, and the solid lines correspond
to the poroviscoelastic case (see below). The slow wave is a
propagation mode at 500 kHz.

To model the correct level of relative attenuation between
the different events, we generalize µ, M , and b to relaxation
functions, with Qµ

0 = 10, QM
0 = 10, and Qb

0 = 2, respectively,
and a relaxation-peak frequency of 250 kHz. Figure 2 shows
the attenuation factors versus frequency, compared to those of
Biot’s poroelastic theory (Carcione, 1998). The viscodynamic
relaxation function b(t) affects mainly the attenuation of the
slow wave. The attenuation values in the absence of viscody-
namic loss are 0.48, 1.98, and 2.2 dB for the fast P-, slow P-,
and shear waves, respectively.

SIMULATIONS

The experimental setup is shown in Figure 3 (top). A sam-
ple of Nivelsteiner Sandstone 21 mm thick, immersed in wa-
ter, is mounted on a rotating table. The traces are obtained
for several values of angle θ . The experimental results are
shown in Figure 4 (top), where the traces are plotted ver-
sus the angle of incidence θ . The events were identified as
the fast compressional wave (FP), the shear wave (S), the
first multiple reflection of the fast compressional wave (FFP),
and the slow wave (SP). A 2-D cross-section of this model
is discretized on a mesh with 238× 238 gridpoints and a grid

Table 1. Material properties.

Material Property Value

Grain Bulk modulus, Ks 36.0 GPa
Density, ρs 2650 kg/m3

Matrix Bulk modulus, Km 6.21 GPa
Shear modulus, µ 4.55 GPa
Porosity, φ 0.33
Permeability, κ 5 Darcies
Tortuosity, T 2.14

Water Bulk modulus, Kw 2.223 GPa
Density, ρw 1000 kg/m3

Viscosity, ηw 1 cP

Table 2. Properties of the saturated rock at 500 kHz.

Value Biot’s theory Viscoelastic theory Experiment

cP+ 2814 m/s 2801 m/s 2810 ± 40 m/s
αP+ 3.4× 10−3 dB 0.48 dB —
cP− 869 m/s 860 m/s 870 ± 20 m/s
αP− 0.29 dB 2.27 dB —
cS 1527 m/s 1498 m/s 1515 ± 25 m/s
αS 2.1× 10−2 dB 2.22 dB —
ρ 2105 kg/m3 2105 kg/m3 —
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spacingDX = DZ = 0.5 mm. Figure 3 (bottom) shows the model
and the source–receiver configuration. Rectangular strips of
40 gridpoints in length are used to absorb unphysical events
coming from the boundaries of the mesh (this region is not

FIG. 1. Phase velocity of the (a) fast, (b) slow, and (c) shear
waves as a function of frequency. The solid lines correspond
to the poroviscoelastic case; the broken lines correspond to
Biot’s poroelastic theory. The experimental velocities, with cor-
responding error bars, given by Kelder and Smeulders (1997)
are represented by black squares.

shown in the figure). In the simulations we rotate the transmit-
ter and the receiver instead of the rock sample. Water is mod-
eled by setting Km=µm= 0, Ks= Kw , and ρs= ρw . The source
is applied at the frame and the fluid (bulk source), such that

FIG. 2. Attenuation factor of the (a) fast, (b) slow, and (c) shear
waves as a function of frequency. The solid lines correspond
to the poroviscoelastic case; the broken lines correspond to
Biot’s poroelastic theory. The Biot and viscoelastic peaks can
be distinguished clearly.
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sx = sz=φsf . Its time history is a Ricker-type wavelet and has a
central frequency of 500 kHz. The poroelastic simulations are
performed with an algorithm developed by Carcione and Helle
(1999), which uses a fourth-order Runge-Kutta time-stepping
scheme and the staggered Fourier method for computing the
spatial derivatives. The stiff part of the differential equations
is solved with a time-splitting technique. On the other hand,
the poroviscoelastic traces are computed with a second-order
Crank-Nicolson scheme (Carcione and Quiroga-Goode, 1996),
the staggered Fourier method, and the splitting technique il-
lustrated in the Appendix. Both algorithms use a time step of
0.03 µs and 3340 steps.

RESULTS AND DISCUSSION

The results of the simulation with Biot’s poroelastic theory
are plotted in Figure 4a. As mentioned, the discrepancies with
the experimental results are from the presence of non-Biot
attenuation mechanisms. The discrepancy in the FP-wave am-
plitude after the critical angle (32◦C approximately) could be
because the plane-wave approximation does not apply to the
synthetic microseismograms, because the source is closer to
the sample compared to the laboratory experiments. Figure 4b

FIG. 3. (Top) Experimental setup of Kelder and Smeulders
(1997). (Bottom) Model and source-receiver configuration for
the simulation of the experiment FP denotes the fast compres-
sional wave, SP denotes the slow compressional wave, and S
denotes the shear wave.

shows the poroviscoelastic microseismograms. As can be ap-
preciated, the relative amplitudes observed are in better agree-
ment with the experiment than those predicted by Biot’s theory
without viscoelastic losses. A better match can be obtained by
using an inversion algorithm, but this is not within the scope of
the present work.

FIG. 4. Microseismogram obtained by Kelder and Smeulders
(1997) for the Nivelsteiner Sandstone as a function of the angle
of incidence θ (top). Numerical microseismograms obtained
from (a) Biot’s poroelastic theory and (b) Biot’s poroviscoelas-
tic theory. The events are the fast compressional wave (FP), the
shear wave (S), the first multiple reflection of the fast compres-
sional wave (FFP), and the slow wave (SP).
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Laboratory measurements of wave velocity and atten-
uation factor versus frequency provide the tool for ob-
taining these empirical parameters and computing realistic
synthetic seismograms. The observed wave attenuation in
reservoir rocks can be the result of several dissipation mech-
anisms. Macroscopic and local fluid-flow mechanisms (Biot
and squirt flow, respectively) are two such mechanisms and,
in principle, can be used to fit experimental data. However,
these mechanism are not enough to model the observed lev-
els of attenuation. Moreover, the strong dependence of these
models on the microstructural features makes them unreli-
able for attenuation prediction. A practical model, which
requires calibration with controlled acoustic experiments, is
the viscoelastic model parameterized by reference frequen-
cies and quality factors associated to the stiffness moduli
and the viscosity/permeability factor. It should be clear, how-
ever, that the matching between data and model results does
not provide a verification about the physical cause of the at-
tenuation. The effects can be either viscoelastic (related to
the stress–strain equation) or viscodynamic (related to the
kinetic energy).

CONCLUSIONS

Laboratory experiments on rock samples can provide
acoustic properties (wave velocity and attenuation) under
in-situ conditions (fluid composition, pore pressure, etc.)
of reservoir rocks, offering a basis for physical and geo-
logical insight into lithologic interpretation of seismic data.
We use Biot’s theory to model ultrasonic microseismograms
and obtain a calibrated seismic modeling code that can be
used to compute synthetic seismograms under general con-
ditions of material variability, since the algorithm is based
on a grid method. The dry-rock moduli are obtained by
fitting the shear- and compressional-wave velocities, and
the tortuosity is calculated by fitting the slow-wave veloc-
ity. These three parameters—dry-rock bulk and shear mod-
uli and tortuosity—characterize the properties of the empty
skeleton and let us calculate the wet-rock properties with
different pore fluids and saturation conditions. Moreover, a
qualitative modeling of the relative amplitudes between the
different waves provides an estimation of the attenuation at
ultrasonic frequencies. The attenuation of the S-wave is six
times higher than the attenuation of the fast P-wave. In fact,

making viscoelastic (i.e., time dependent) the dry-rock shear
moduli only, together with the coupling modulus and vis-
cosity/permeability factor, is enough to predict the observed
amplitudes.
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APPENDIX

TIME-SPLITTING TECHNIQUE FOR BIOT’S POROVISCOELASTIC EQUATIONS

Biot’s poroviscoelastic differential equations have the form
v,t =Mv, where v is the wavefield vector and M is the propaga-
tion matrix. All the eigenvalues of M have a negative real part.
While the eigenvalues of the fast wave have a small real part,
the eigenvalues of the slow wave (in the diffusive regime) have
a large real part (Carcione and Quiroga-Goode, 1996). The
presence of this diffusive mode makes the differential equa-
tions stiff. Then, seismic and sonic modeling are unstable when
using explicit time integration methods. In both cases, the Biot
peaks (i.e., the presence of the diffusive mode) make the prob-
lem stiff.

Since the presence of the slow compressional wave makes
Biot’s differential equations stiff, a time-splitting integra-
tion algorithm is used (Carcione and Quiroga-Goode, 1996).
The evolution operator can be expressed as exp(Mr +Ms)t ,
where r indicates the regular matrix and s is the stiff ma-
trix. The product formula exp( 1

2 Mst) exp(Mr t) exp( 1
2 Mst) is

second-order accurate. The stiff part is solved analytically; the
nonstiff part is solved with an A-stable second-order Crank-
Nicolson scheme. This method possesses the stability proper-
ties of implicit algorithms, but the solution can be obtained
explicitly.
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In the following we give the solution of the stiff part in
closed analytical form. Consider the x-component of the par-
ticle velocities. The stiff differential equations, including the
corresponding memory variable, are

vx,t = −β12

(
η

κ

τε

τσ
qx + e

)
, (A-1)

qx,t = −β22

(
η

κ

τε

τσ
qx + e

)
, (A-2)

and

e,t = − 1
τσ

[
η

κ

(
τε

τσ
− 1

)
qx + e

]
, (A-3)

where

β12 = − ρ f

ρm− ρ2
f

and β22 = ρ

ρm− ρ2
f

(A-4)

are components of a density matrix (Carcione, 1996;
Carcione and Quiroga-Goode, 1996).

Equations (A-1)–(A-3) can be solved analytically. The in-
termediate field variables (indicated by an asterisk) as a func-
tion of the solution at time ndt are

q∗x = m11qn
x +m12en, (A-5)

e∗ = m21qn
x +m22en, (A-6)

and

v∗x = vn
x +

β12

β22

(
q∗x − qn

x

)
, (A-7)

where

m11 = 1
2D

[(a22 − a11 + D)e1 + (−a22 + a11 + D)e2],

m12 = a12

D
(e2 − e1), m21 = a21

D
(e2 − e1),

m22 = 1
2D

[(a11 − a22 + D)e1 + (−a11 + a22 + D)e2],

(A-8)

e1 = exp
[

1
2

(a11 + a22 − D) dt

]
,

e2 = exp
[

1
2

(a11 + a22 + D) dt

]
(A-9)

D = (a2
11 + 4a12a21 − 2a11a22 + a2

22

)1/2
, (A-10)

and

a11 = −η
κ

τε

τσ
β22, a12 = −β22,

(A-11)

a21 = −η
κ

1
τσ

(
τε

τσ
− 1

)
, a22 = − 1

τσ
.

The starred field variables are the input for a Crank-
Nicolson scheme that solves the poroviscoelastic equations
with η= 0. The result is the solution at time (n+ 1) dt. A
similar solution applies to the z-component of the particle
velocities.

The spatial derivatives are calculated with the staggered
Fourier method by using the fast Fourier transform (FFT)
(Carcione and Helle, 1999). This approximation is infinitely
accurate for band-limited periodic functions with cutoff
spatial wavenumbers which are smaller than the cutoff
wavenumbers of the mesh.


